10. If a person knows the sun time on the Prime Meridian and the local sun time (their location), what can be determined?

longitude

- 11. What is the longitude of our location? 75° W
- 12. If a ship is traveling West in the Atlantic Ocean, how will time change?

 earlier in time
- 13. If an airplane is traveling East in the Pacific Ocean, how will time change?

later in time

v.	Fields -	a region of space or an area
	that	has a measurable value of a
		n property at every point
	A. Isoline:	
		s on a field map connectine
		1 points of the same value

B. The diagram below shows an elevation field map of a geographical region; the elevation is in feet (above sea level). Complete this field map by drawing elevation isolines for 40, 50, 60, 70 and 80 feet.

1	. What is the approximate elevation of point
	A 75 feet (between 71.79 feet)
	B 45 feet (" 41-49 feet)
	c 55 feel (" 51-59 feel)
2	. Isolines that show elevation are called <u>contain lines</u> .
	contour lines reveal the
	shape of a landscape D.J. Mills @ 1999

C. The field map below shows weather data plotted for a January morning.

1. What measurable property is shown on this map? <u>Femperature</u>

2. Based on this property, the isolines on this map are called 150 therms (therm ometer)

3. What is the approximate measurement of this property for New York State? ______

D. The field map below shows the average yearly number of thunderstorms in the United States.

1. Approximately how many thunderstorms occur each year in:

a. Albany, New York - 21-29

b. Los Angeles, California - 1ess than 10

c. New Orleans, Louisiana - 71-79

VI. Topographi	c Maps
----------------	--------

... are maps of a elevation field

A. <u>Topographic Maps</u> show the elevation of the land by using contour lines, and show other natural and man-made features by using symbols.

B. <u>Contour Line</u> - <u>isolines</u> on a map connecting points of the same (equal) elevation

distance in feet or meters above sea level (0 feet

consecutive contour lines

D. Index Contour Line - heavy or dark contour line that marks major increments or changes on a contour map (usually 100 foot

F. Bench Mark (B.M.)
Official marker in the ground that indicates

"exact " elevation above sea level

G. Spot Elevations – are the elevations of such places as road intersections, hilltops, lake surfaces and other points of special interest. These points are located on the map by a small cross (+), unless the location is obvious, such as certain road intersections or hilltops.

VIII. Topographic Map Skills

A. <u>Drawing Contour Lines on a Field Map</u> – draw contour lines for 20, 40, 60, 80, 100, 120 feet

C.	Gradient-	rate	at	which	Models and L	amension Atio	ons or Earth	- 21
	-88	chonoc	es fr	mo	place	to	place	78
	1. Formula	a: gra	adjent		change	in	field	value
	560	1	835		2.0	dist	2000	

2. Calculating Gradient

Use the elevation field map that you drew contour lines on (which is on the previous page) to calculate the gradient between:

Gradient =
$$\frac{110 - 20}{3.5 \text{ miles}}$$

 $\frac{90}{3.5} = 25.7 \text{ ft/mile}$

b. point B and point D

c. point B and point E

$$\frac{123-80}{1.5} = \frac{43}{1.5} = \frac{28.7}{1.5} + \frac{1}{1.5}$$

d. point F and point C

Reference

Table

page =

2.00	Ćį I	Co OI Editi		
Α.	<u>Th</u> 1.	ne three "spheres" o	of outer Earth the shell of gases	that atmos ai
		surrounds Earth.	#: O	7 g
	2.		- the waters of Earth	; its HaD by
		oceans, seas, lakes		
	3.	lithosphere	- the dense, solid ou	ter shell of litho
		Earth composed of	rock.	
		29	% of Earth's surface is cove	red by land.
	4.		atmosph	re
			b. hydros	sphere
	53	/ /		210
	•			E * *
		1		
	•			
			c. lithosp	ner
				, E
	5.	Which sphere of Ea	irth is:	
		a. most dense? _	lithosphere	
	77	b. least dense?	atmosphere	
В. І	Ear	th's Interior	0.100 0000	
_		CYUST	4. Outer core	-) -005
	14	×	Copy.	(ESKI
		3		(ESRI Pg/0
	82			
		mantle (
2		שוחוטוי		
3.	11	mer core		O.J. Mills © 1999

Determine the volume of the objects in each illustration:

27.0 cm3

144.0 m

160.0 cm3

Volume by Displacement

Volume of Water

50.0 ml

Volume of Water and Marble

55.0 mL

Volume of Marble

5.0 mL

D. J. Mills @1999

E. Mass - amount of matter in an object

Determining Mass: use a balance
Record mass in grams (g) or
Kilograms (Kg)

Volume (or "three-dimensional measurement" sometimes referred to

as the "size" of an object) - CM3 or ML

The amount of space occupied by an object

1.05/ml - density of liquid hadre pl L-SRTS

10e floats in hadre so it is less kinse

tran liquid hadre

The amount of space occupied by an object

1.05/ml - density of liquid hadre pl L-SRTS

10e floats in hadre so it is less kinse

The liquid hadre of the size o